ÉLÉMENTS CHIMIQUES	PÉRIODE RADIOACTIVE	ORIGINE	PRÉSENCE	EXEMPLES D'UTILISATION
Tritium	12,3 ans	Artificielle	-	Fusion thermonucléaire Marquage biologique
Carbone 11	20,4 minutes	Artificielle	-	I magerie médicale
Carbone 14	5730 ans	Naturelle	Atmosphère Composés carbonés	Datation
Oxygène 15	2,02 minutes	Artificielle	<u> </u>	I magerie médicale
Phosphore 32	14,3 jours	Artificielle	-	Recherche en biologie
Soufre 35	87,4 jours	Artificielle	-	Recherche en biologie
Potassium 40	1,3 milliard d'années	Naturelle	Roches riches en potassium, squelette	-
Cobalt 60	5,27 ans	Artificielle	-	Radiothérapie Irradiation industrielle Gammagraphie
Strontium 90	28,8 ans	Artificielle	Produit des réacteurs nucléaires	Jauges d'épaisseur
lode 123	13,2 heures	Artificielle	-	Médecine nucléaire
lode 131	8,05 jours	Artificielle	Produit des réacteurs nucléaires	-
Césium 137	30,2 ans	Artificielle	Produit des réacteurs nucléaires	Curiethérapie
Thallium 201	3,04 jours	Artificielle	-	Médecine nucléaire
Radon 222	3,82 jours	Naturelle	Gaz s'échappant des roches granitiques	-
Radium 226	1 600 ans	Naturelle	Roches terrestres contenant de l'uranium	-
Thorium 232	14 milliards d'années	Naturelle	-	Datation des minéraux Combustible potentiel
Uranium 235	704 millions d'années	Naturelle	Certaines roches terrestres Roches granitiques	Dissuasion nucléaire Combustible
Uranium 238	4,47 milliards d'années	Naturelle	Certaines roches terrestres Roches granitiques	Combustible dans les réacteurs à neutrons rapides
Plutonium 239	24 100 ans	Artificielle	Produit des réacteurs nucléaires	Dissuasion nucléaire Combustible

L'activité d'un échantillon radioactif diminue avec le temps du fait de la disparition progressive des noyaux instables qu'il contient. La désintégration radioactive d'un noyau donnée est un phénomène aléatoire.

On peut cependant donner pour chaque isotope radioactif une période radioactive ou demi-vie qui est le temps au bout duquel la moitié des atomes radioactifs initialement présents a disparu par transformation spontanée.

Selon les noyaux radioactifs concernés, cette période est très variable : quelques secondes, quelques heures, plusieurs jours, des centaines d'années ou des milliards d'années.

© 2000-2024, rue des écoles