Primitives. D'après sujet Bac S, Centres Étrangers, juin 2000

Énoncé

On considère la fonction f définie sur]0; $+\infty[$ par $f(x) = e^{-x} \ln{(e^{2x} - 1)}$. On cherche l'ensemble des primitives de f sur]0; $+\infty[$. On peut utiliser l'intégration par parties. L'énoncé propose une autre méthode qui, en fait, n'est différente qu'en apparence.

- 1. Démontrer que la fonction f est solution de l'équation différentielle $y'+y=\frac{2e^x}{e^{2x}-1}$.
- 2. Démontrer que quel que soit $x \in \mathbb{R}^*$, $\frac{2e^x}{e^{2x}-1} = \frac{e^x}{e^x-1} \frac{e^x}{e^x+1}$.
- 3. Déduire des questions précédentes l'ensemble des primitives de la fonction f sur]0; $+\infty[$.

La bonne méthode

- 1. Il s'agit de démontrer que quel que soit x > 0, $f'(x) + f(x) = \frac{2 e^x}{e^{2x} 1}$.
- 2. Le plus simple est de montrer que l'expression de droite est égale à l'expression de gauche. On peut également effectuer la différence des deux expressions et montrer que celle-ci est nulle.
- 3. Toute primitive de la dérivée d'une fonction est... Par ailleurs, une primitive d'une fonction s'écrivant sous la forme $\frac{u'}{u}$ est ln |u|.

© 2000-2025, Miscellane