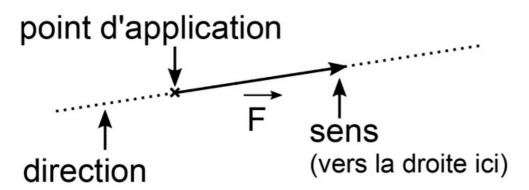
Fiche

Les systèmes qui nous entourent sont mis en mouvement, restent immobiles ou encore tombent sur le sol s'ils sont lâchés... Ces observations nous amènent à introduire la notion d'action mécanique. Chaque action est modélisée par une force et représentée par un vecteur.

I. La modélisation des actions mécaniques


- Lorsque le milieu extérieur agit sur le système étudié, alors le milieu extérieur exerce une **action mécanique** sur le système. Cette action mécanique peut avoir différents effets, elle peut :
 - mettre en mouvement le système (exemple : le footballeur tire dans un ballon immobile) ;
 - modifier sa trajectoire (exemple : le tennisman tape dans la balle qui vient vers lui) ;
 - déformer le système (exemple : l'enfant appuie sur le ballon de baudruche).
- Les actions peuvent s'exercer à distance lorsque le milieu extérieur ne touche pas le système ou elles peuvent être de contact lorsque le système et le milieu extérieur se touchent.

Exemples:

- un aimant attire vers lui une bille en action. L'action qu'exerce l'aimant sur la bille est une action à distance ;
- une dame promène son chien en laisse, celui-ci tire sur la laisse. L'action qu'exerce le chien sur la laisse est une action de contact.
- Une action est modélisée par une force qui sera représentée par un vecteur. Les caractéristiques du vecteur force F sont :
 - direction : selon la droite d'action ;
 - sens : dans le sens de l'action ;
 - valeur ou intensité : de valeur F en newtons (N) ;
 - point d'application : s'il s'agit d'une action de contact, au point de contact.

Il faut faire attention à ne pas confondre direction et sens.

Exemple : le joueur lance la balle avec une force $F_{main/balle}$.

Les caractéristiques de cette force sont :

- direction : selon la droite d'action, ici oblique ;
- sens : dans le sens de l'action, ici vers le haut ;
- valeur ou intensité : de valeur F en newtons (N), la longueur du vecteur est proportionnelle à F ;
- point d'application : au centre de la surface de contact.

II. Le principe des actions mécaniques ou troisième loi de Newton

- Deux systèmes sont dits en interaction s'ils exercent une action l'un sur l'autre.
- Lorsque deux systèmes sont en interaction, le système A exerce une action mécanique sur le système B qui sera modélisée par la force $F_{A/B}$ et le système B exerce une action mécanique sur le système A qui sera modélisée par la force $F_{B/A}$. Ces deux forces sont reliées par la relation vectorielle :

 $F_{A/B} = -F_{B/A}.$

Cette relation est le principe des actions mécaniques et traduit le fait que :

• les deux forces ont une même droite d'action ;

- les deux forces ont des sens opposés ;
- les deux forces ont une même valeur.

Exemple : la valeur de la force exercée par le pied du footballeur sur un ballon est F_{F/B} = 500 N, alors le ballon exerce une force de même direction, de sens opposé et de même valeur sur le pied du footballeur : $F_{B/F} = 500 \text{ N}$.

III. La force d'interaction gravitationnelle

• Tous les corps qui ont une masse sont attirés entre eux : c'est l'interaction gravitationnelle.

Deux systèmes A et B, de masse m_A et m_B , séparés par une distance d sont en interaction : ils exercent l'un sur l'autre une action mécanique attractive modélisée par les forces d'interaction gravitationnelle F_{A/B} et F_{B/A}. Ces deux forces sont reliées par la relation vectorielle : $F_{A/B} = -F_{B/A}$.

Les caractéristiques de ces forces sont :

- direction : selon la même droite d'action ;
- sens : elles ont des sens opposés ;
- intensité : $F_{A/B} = F_{B/A} = G \cdot \frac{m_A \cdot m_B}{.2}$ en N.

Où m_A et m_B sont les masses des systèmes A et B en kilogrammes (kg),

d est la distance entre les systèmes A et B en mètres (m),

G est la constance de gravitation universelle : $G = 6,67 \cdot 10^{-11} \text{ N.m}^2 \cdot \text{kg}^{-2}$.

• Si l'on appelle u_{AB} le vecteur unitaire porté par la droite (AB) orienté de A vers B, alors : $F_{A/B} = -G \cdot \frac{m_A \cdot m_B}{d^2}$. Exemple : la valeur de la force gravitationnelle exercée par la Lune sur la Terre est : $F_{L/T} = G \cdot \frac{m_L \cdot m_T}{d^2}$ avec $m_L = 7.34 \cdot 10^{22}$ kg, $m_T = 5.97$ \cdot 10²⁴ kg et la distance Terre-Lune $d = 3.84 \times 10^5$ km. Il faut convertir les distances en mètres, soit $d = 3.84 \times 10^8$ m. On trouve alors $F_{L/T} = 6,67 \cdot 10^{-11} \times \frac{7,34 \cdot 10^{22} \times 5,97 \cdot 10^{24}}{(3,84 \times 10^8)^2} = 1,98.10^{20} \, \text{N}.$

IV. Poids d'un objet

- La force gravitationnelle exercée sur un corps C de masse m_C à la surface de la Terre de masse m_T vaut : $F_{T/C} = -G \cdot \frac{m_T \cdot m_C}{R_\tau^2} \cdot u_{TC}$ où R_T est le rayon de la Terre.
- Or, à la surface de la Terre, cette force gravitationnelle peut être assimilée au poids du corps C qui est donné par $P = m_C \cdot g$. En comparant ces deux forces on en déduit que :

$$g = G. \frac{m_{\rm T}}{R_{\rm T}^2}$$

avec $m_{\rm T}$ la masse de la Terre en kilogrammes (kg), $R_{\rm T}$ le rayon de la Terre en mètres (m) et G la constance de gravitation universelle : $G = 6.67 \cdot 10^{-11} \text{N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$.

g est appelé **l'intensité du champ de pesanteur** terrestre. L'unité est le N · kg⁻¹ ou le m · s⁻².

Exemple : avec G = $6.67 \cdot 10^{-11} \text{N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$, $m_T = 5.97 \cdot 10^{24} \text{ kg}$ et $R_T = 6.37 \times 10^6 \text{ m}$, on trouve :

 $g = 6,67 \cdot 10^{-11} \times \frac{5.97 \cdot 10^{24}}{(6.37 \times 10^6)^2} = 9,81 \ N \cdot \text{kg}^{-1}$, qui est habituellement la valeur utilisée pour le champ de pesanteur sur Terre.

- Le poids pour un système de masse m est : $P = m \cdot g$. Les caractéristiques du poids sont :
 - direction : vertical en un lieu ;
 - sens : vers le bas ;
 - **intensité**: P = m.g où g est l'intensité du champ de pesanteur;
 - point d'application : au centre de gravité du système.

Exemple: la valeur du poids d'un enfant de masse m = 50 kg sur Terre est :

 $P = 50 \times 9.81 = 490.5 \text{ N}, \text{ avec } g = 9.81 \text{ N} \cdot \text{kg}^{-1}.$

• Le poids P et le champ de pesanteur g ont même direction et même sens.

V. Force exercée par un support

- Lorsqu'un système est maintenu par un fil alors la force F modélisant cette action a pour caractéristiques :
 - direction : selon le fil ;
 - sens : du système vers le fil ;
 - intensité : si le système est vertical, alors le principe des actions réciproques s'applique et F = −P où P est le poids du système, donc elles ont même intensité : F = P;
 - Point d'application : au point de contact entre le système et le fil.

Cette force est parfois appelée la tension du fil.

• Lorsqu'un système est posé sur un support alors la force, appelée réaction du support et notée R, exercée par le support sur le système immobile est R = -P. Ces deux forces ont même direction, même intensité et un sens opposé.

Exercice n°1
Exercice n°2
Exercice n°3
Exercice n°4
Exercice n°5
À retenir : Savoir modéliser une action par une force et savoir représenter cette force par un vecteur. Connaître et savoir exploiter le principe des actions réciproques ou troisième loi de Newton.

Savoir distinguer actions à distance et actions de contact.

Connaître et savoir utiliser l'expression vectorielle de la force gravitationnelle, du poids d'un objet.

S'il n'y a pas de frottement, la réaction du support a une direction perpendiculaire au support.

Connaître l'expression vectorielle du poids d'un objet approché par la force d'interaction gravitationnelle s'exerçant sur lui à la surface d'une planète.

Savoir représenter qualitativement la force modélisant l'action d'un support.

© 2000-2025, Miscellane