Fiche

C'est en recherchant des fonctions dérivables sur $\mathbb R$ dont la dérivée est proportionnelle à la fonction que l'on est conduit à l'étude de la fonction exponentielle. Celle-ci joue un rôle capital en mathématiques, car c'est une fonction de référence : elle intervient dans de nombreuses lois de probabilité.

1. Comment définir la fonction exponentielle ?

Définition

La fonction exponentielle est l'unique fonction dérivable sur l'ensemble des réels vérifiant les deux conditions suivantes :

- pour tout réel x, $\exp'(x) = \exp(x)$ et $\exp(0) = 1$. Conséquences : $e^0 = 1$; $e^1 = e \approx 2,718$; $e^{-1} = \frac{1}{e}$ et $e^{0.5} = \sqrt{e}$;
- pour tout réel x on a : $e^x \times e^{-x} = 1$.

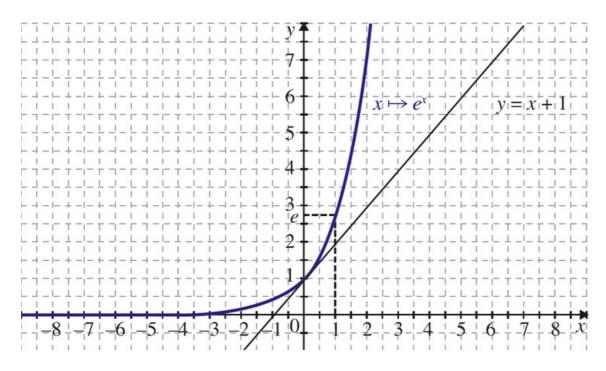
Dérivée, courbe représentative

La fonction exponentielle est égale à sa dérivée.

La fonction exponentielle est strictement positive sur \mathbb{R} , donc sa fonction dérivée aussi, ainsi la fonction exponentielle est strictement croissante sur

 \mathbb{R}

Courbe représentative de la fonction exponentielle



Dérivée de la fonction e^u

Soit u une fonction dérivable sur un intervalle I, alors pour tout réel x appartenant à I on a : $(e^u)'(x) = u'(x) \times e^{u(x)}$.

Exercice n°1

Exercice n°2

2. Quelles sont les propriétés à retenir ?

Propriétés:

- relation fonctionnelle : quels que soient les réels x et y on a : $e^x \times e^y = e^{x+y}$;
- quels que soient les réels x et y on a $\frac{e^x}{e^y} = e^{x-y}$;
- pour tout nombre réel x on a : $\frac{1}{e^x} = e^{-x}$;
- pour tout nombre réel x on a : $e^{\frac{x}{2}} = \sqrt{e^x}$;
- pour tout nombre réel x et pour tout entier n on a : $(e^x)^n = e^{nx}$;
- $e^a = e^b$ si et seulement si a = b;

- $e^a < e^b$ si et seulement si a < b.
- Exercice n°5

Exercice n°4

Exercice n°6

À retenir

- La fonction exponentielle est l'unique fonction f dérivable sur l'ensemble des réels qui est sa propre dérivée et qui vérifie f(0) = 1.
- Pour tout réel x on $a: e^x \times e^{-x} = 1$.
- Soit u une fonction dérivable sur un intervalle I, alors pour tout réel x appartenant à I on a : $(e^u)'(x) = u'(x) \times e^{u(x)}$.
- Exp(x) > 0 pour tout réel x.

© 2000-2025, Miscellane